Please complete this page for each Student Learning Outcome (minimum of 3) for each of your degree programs.

Degree Program Title: BA, BS in Physics
Degree Type: ____________________
Banner/CIP Code: _______________

STUDENT LEARNING OUTCOME #

1. STUDENT LEARNING OUTCOME (SLO): What will a student be able to do, what knowledge, skills, values will they have, etc., upon graduation from the program that will be assessed? A Student Learning Outcome is a clear concise statement that describes how students can demonstrate their mastery of some element of the academic program goals.

2. LINKS TO CURRICULUM & PROGRAM FACULTY. What courses support this SLO? How do all program faculty participate in setting the goals, content and learning outcomes of these courses? How do all program faculty participate in analyzing and making recommendations based on the results of student assessments?

3. ACTION PLAN. STRATEGIES/METHODS FOR OBSERVING STUDENT LEARNING. How will data be collected, analyzed, shared? How will faculty observe the accomplishment of this outcome? Please provide specific descriptions for how, when, how often, what course(s), what student performances will be observed, collected and analyzed. Please provide or attach any descriptions of your ACTION PLAN OR PROCESS addressing the who, what, when, where questions for the assessment program.

4. CRITERIA FOR SUCCESS. MEASURES & TARGETS. What are the standards of progress or criteria used for judging success for the student learning assessment observations? Please attach any assessment tools, standards (rubrics) or other documents used to judge success or achievement of the outcome.

These two additional reports for questions 5&6 below will be due in May 11, 2012

5. ACHIEVEMENT SUMMARY. FINDINGS & RESULTS. What are the results of the assessment of this learning objective thus far? Be sure to include the year of the assessment, attach any relevant reports, data tables, etc. Please be specific in your descriptions. Indicating that n% students took a test or passed an oral exam is not an example of assessment findings.

6. PROGRAM ENHANCEMENT. How has assessment data been used? Please give examples over the last 3 years. What are the specific mechanisms for communicating results and changing courses, curriculum, learning activities within a course, etc

Review and Approval Signatures & Date:
Program Coordinator if applicable
Department Chair: ____________________
Dean: ____________________
Date: 2/27/12
Please complete this page for each degree program, graduate and undergraduate.

Student Learning Outcomes Check Sheet
Due 24 Feb 2012

Degree Program Title: ____________________ Degree Type: ________________
Banner/CIP Code: ____________________

Responsible Program Coordinator/Chair completing this form: ________________

A. Program MISSION Statement: What body of knowledge and/or what skills and qualities will graduates from this program possess upon completion of the degree?

B. Does this program have any culminating experience or capstone course that would capture the cumulative knowledge and accomplishments of graduates of your program? If so, please describe the process by which faculty participate in the design and evaluation of the course and its products/experiences.

In the attached pages, please provide the learning outcomes the faculty as a whole expects from graduates from the program. While you may choose as many outcomes as you wish, it is often a good strategy to focus on the most important goals for students in the first few years of your Student Assessment Program. For example, two or three of the most critical goals would be a good starting point. Please complete questions 1-6 for each Student Learning Outcome you are assessing or plan to evaluate in the next review period on the attached sheet.
Texas A&M University-Commerce

Detailed Assessment Report
2011-2012 BA, BS, Physics

Mission / Purpose

The program provides high quality undergraduate instruction and mentoring to undergraduate physics students while developing faculty’s research and scholarly capabilities and the professional development of students to enhance the field of physics and overall services to the community.

Goals and Student Learning Outcomes/Objectives, with Any Associations and Related Measures, Targets, Findings, and Action Plans

G 1: Fundamental Theories
Physics majors should acquire familiarity with fundamental theories and methodologies in physics.

SLO 1: Knowledge Ability and Skills
Students will have command of physics knowledge covered in the physics program courses.

Related Measures

M 1: Examinations
Students will be required to show there knowledge obtained the physics courses through a number of examinations during the semester and a final examination at the end.

Source of Evidence: Standardized test of subject matter knowledge

M 2: Laboratory Assignments
Students will show knowledge of physics theories and principles through laboratory assignments and write-ups.

Source of Evidence: Written assignment(s), usually scored by a rubric

M 3: Laboratory Work
Students will gain advanced skills in laboratory experiments and projects through the two required advanced physics laboratory classes.

Source of Evidence: Project, either individual or group

G 2: Communicating Knowledge
Students should be able to communicate their knowledge of physics both in written and oral presentations; they should be adept at presenting ideas conceptually and in specific detail.

SLO 1: Knowledge Ability and Skills
Students will have command of physics knowledge covered in the physics program courses.

http://app.weaveonline.com/reports/DAR.aspx

2/22/2012
Related Measures

M 1: Examinations
Students will be required to show there knowledge obtained the physics courses through a number of examinations during the semester and a final examination at the end.
Source of Evidence: Standardized test of subject matter knowledge

M 2: Laboratory Assignments
Students will show knowledge of physics theories and principles through laboratory assignments and write-ups.
Source of Evidence: Written assignment(s), usually scored by a rubric

M 3: Laboratory Work
Students will gain advanced skills in laboratory experiments and projects through the two required advanced physics laboratory classes.
Source of Evidence: Project, either individual or group

SLO 3: Communicating Skills
Students will demonstrate proficient written and oral communication skills to convey ideas and/or results of research/laboratory efforts.

Related Measures

M 2: Laboratory Assignments
Students will show knowledge of physics theories and principles through laboratory assignments and write-ups.
Source of Evidence: Written assignment(s), usually scored by a rubric

M 4: Seminar
Students will learn effective methods for disseminating knowledge through participation in weekly seminars.
Source of Evidence: Presentation, either individual or group

G 3: Practical Skills
Students will have adequate practical skills to approach physics problems, including designing and executing experiments to test physical theories, as well as analyzing and understanding experimental data.

SLO 1: Knowledge Ability and Skills
Students will have command of physics knowledge covered in the physics program courses.

Related Measures

M 1: Examinations
Students will be required to show there knowledge obtained the physics courses through a number of examinations during the semester and a final examination at the end.
Source of Evidence: Standardized test of subject matter knowledge

M 2: Laboratory Assignments
Students will show knowledge of physics theories and principles through laboratory assignments and write-ups.

Source of Evidence: Written assignment(s), usually scored by a rubric

M 3: Laboratory Work
Students will gain advanced skills in laboratory experiments and projects through the two required advanced physics laboratory classes.
Source of Evidence: Project, either individual or group

SLO 2: Practical Ability and Skills
Students should have appropriate skills in demonstrating experiments and designing and executing new experiments in the lab.

Related Measures

M 2: Laboratory Assignments
Students will show knowledge of physics theories and principles through laboratory assignments and write-ups.
Source of Evidence: Written assignment(s), usually scored by a rubric

M 3: Laboratory Work
Students will gain advanced skills in laboratory experiments and projects through the two required advanced physics laboratory classes.
Source of Evidence: Project, either individual or group