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ABSTRACT

The present work is a part of a larger project on recognizing and identifying weapons from a single image and
assessing threats in public places. Methods of populating the weapon ontology have been shown. A clustering-
based approach of constructing visual hierarchies on the base of extracted geometric features of weapons has
been proposed. The convergence of a sequence of visual hierarchy trees to a conceptual hierarchy tree has been
discussed. For illustrative purposes, from the growing conceptual ontology, a conceptual hierarchy tree has been
chosen as a point of convergence for a sequence of visual hierarchy trees. A new approach is defined, on the base
of the Gonzalez’ algorithm, to generate the visual hierarchies. The closest visual hierarchy tree is selected as
the search environment for a query weapon. A method of threat assessment is proposed. This method uses the
attribute-rich conceptual hierarchy tree to evaluate the results from the visual hierarchy tree search. The two
trees are linked at the leaf-level, because the visual hierarchy closest to the conceptual has the same distribution
of the leaf nodes. A set of experimental results are reported to validate the theoretical concepts. A portion of
the existing weapon ontology is used for this purpose.

Keywords: features extraction, weapon ontology, visual/conceptual hierarchy, convergence, weapon identifica-
tion, threat assessment

1. INTRODUCTION

The present paper is a part of a larger project whose development is evolving through several papers includ-
ing.2,18,19 The project aims to develop a system capable of automatic identification of a firearm/small arm
carried by individuals in public areas. The purpose is to assess the threat that may be posed by these individuals
to the public.

In this project we assume that a single image is an input. The image may come from different sources like
infrared or wave imaging systems4,17 which does not raise privacy issues. The basics of low-level geometric
features extraction were presented in.18,19 The geometric features subject of extraction are the weapons’ shape
and convex hull. The methods used to determine a weapon’s boundaries are presented in.2,19 Objects partitioning
and weapons’ regions matching are discussed in.18

The basic concepts of the weapons’ ontology semantics are presented in18 along with a small example of such
an ontology. For the purpose of nodes labeling an active contour was applied to extract the convex hull (CH)
and the boundary of every weapon.2,19,20 Finite numerical sequences have been generated from the extracted
geometric features and used for nodes labeling. Sequence alignment algorithms were employed to implement the
search through a visual hierarchy most close to the conceptual hierarchy. In these experiments, a weapon was
retrieved with a 100 percent match to the query weapon in approximately 0.3 seconds.
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In the present work the firearm/small arm ontology was further extended to over 300 nodes. An automatic
tool was used to browse the web and other sources to retrieve the information loaded to each node of the ontology.
The CHs’ generated sequences are used along with clustering algorithms to generate the visual hierarchies which
converge to the conceptual hierarchy of the ontology. The new concept of visual hierarchy convergence provides
a significant increase of the search speed, because the search is performed in the visual hierarchy most close to
the conceptual one, which in turn provides the properties of the firearm on which the threat assessment is based.
The links between the leafs of the two hierarchies are used for projection of the weapons, most closely matching
the query weapon, from the visual to the conceptual tree. In the latter one the threat assessment is performed
following the ancestors of the projection.

The contributions of the present paper consist of:

• significant extension of the first weapon ontology;

• adaptation of Gonzalez’6 clustering method to develop a visual hierarchy of the weapons;

• use the convergence of this hierarchy to a conceptual hierarchy for swift search to identify the weapon in
the query image;

• use of the conceptual hierarchy of the ontology for threat assessment.

The rest of the paper is organized as follows. Section 2 presents the main algorithm employed for quick CH
extraction. Section 3 describes the labeling of nodes. The search algorithm is presented in Section 4. Conceptual
ontology hierarchy is described in Section 5. Section 6 introduces the algorithm employed for ontology population.
The convergence of the visual to the conceptual ontology is developed in Section 7. The threat assessment
approach is presented in Section 8, while the experimental results are presented and described in the next one
(Section 9) and the paper concludes with discussion and a future work description in Section 10.

2. WEAPON CONVEX HULL DETECTION

The CH is a fundamental notion for the present research, used to label nodes and to cluster the set of weapon
images. A number of clusterings are performed and every clustering is presented as a graph called visual hierarchy.
A sequence of visual hierarchies (trees) is generated to converge to the conceptual hierarchy of the weapons.

The CH of an object is the convex polygon with the smallest perimeter that circumscribes the object. We
consider in the present work that all the weapons in a category will have one and the same CH (see2,18). Thus
the CHs of the weapons which belong to a certain category have the same CH used to define a finite numerical
sequence which labels the node of the weapon’s category such as handgun, rifle, machine gun.

The concept of active convex hull model (ACHM) was introduced first in20 in order to overcome the difficulties
experienced by the traditional CH algorithms which will not provide results on large image regions and require
modifications to work on color image regions.20

ACHM was designed on the approximate solution of the heat partial differential equation (PDE). Thus a
stability convergence condition is used there to make the contour converge. To avoid this disadvantage a new
parametric active convex hull model (PACHM) was developed on the basis of the exact solution of the heat PDE.
PACHM first applies the Shrinking-Active Contour model on the Exact Solution (S-ACES) described in.2,19 S-
ACES extracts the weapon’s boundary which is applied to generate a finite numerical sequence used to annotate
the node of a single weapon.2 To evolve the active contour through the image toward the weapon’s boundary
the S-ACES model uses the following equation:

r(s, t(u)) = eas−4a2(t0+u∂t)[x(s), y(s)], (1)

where x(s) = C1 cos(cas) and y(s) = C2 sin(cas). In Eq. 1 C1, C2 and c are real numbers, s is a space parameter,
|ds|/2 = a, t0 is the initial time moment, ∂t is the length of the time step, u gives the consecutive time step.
S-ACES halts the evolving curve when the following boundary condition (BC) holds:

r(s∗, t) = r(s∗, t + ∂t) if ε2 >
∂f(r(s∗, t))

∂t
> ε1 (2)
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for a particular s = s∗ and for 2.5/a2 ≥ t + ∂t ≥ 0.001/a2.

Once the active contour is stopped the following function is calculated:

d(Qs(u)) = d(s, u) = |r(s, t(u))− r(s,
0.001

a2
)|. (3)

In Eq.3 Qs(u) is an active contour point for which the Euclidian distance has been calculated between the
initial time 0.001

a2 and the time t(u) at which the point stopped evolution.

Further, the local minima of the function d(s, u) are determined. Next, all consecutive triplets of the local
minima that define convex arc are detected. Linking these local minima defines the convex hull of the weapon
under consideration. Both S-ACES and PACHM were applied to extract the boundary and the CH of about
fifty weapons. Fig. 1 Part a) shows a Howell Automatic Rifle along with its boundary and CH.

Figure 1. a) Image of a Howell Automatic Rifle along with its boundary (in red) extracted by S-ACES and CH (blue)
defined by PACHM; b) CH and boundary of an AC-556 assault rifle. A CH vertex, and a concavity with its start and end
are marked by arrows. Concave and convex regions on the boundary with a small area are all merged into a line segment.

3. NODE LABELING

Cyclic sequences of fixed-precision angles generated from CH and boundaries of 2D-images of firearms are used
to label nodes as described in.2 A convex hull sequence is a cyclic sequence of angles, where an angle at a vertex is
defined by the two intersecting sides. A boundary sequence is a cyclic sequence of segments, where each segment
is a sequence of angles defined by boundary points and segment start and end points. Each segment has a sign
indicating if it is a line, a concave, or convex segment. Fig. 1 Part b) illustrates the CH and boundary of an
AC-556 assault rifle. One boundary segment is indicated by its begin and end points in the figure. The boundary
sequence for this weapon contains a concave segment that corresponds to this boundary segment. There may
be many segments with small area (a small fraction to the entire area) on the boundary of any shape. Such
consecutive segments are merged into one line segment. An example boundary part, where this may be the case,
is shown on the top right part of the weapon boundary in Fig. 1 Part b).

Arslan et al.2 label intermediate nodes by CH sequences. Experts choose which intermediate nodes and
which CH sequences are to be used. The motivation is to implement the class-subclass relation for a visual
hierarchy of the ontology within the ontology itself. The present paper proposes defining the subclass relation
using clustering of CHs of firearm extracted from images. This yields a separate visual hierarchy tree on which
weapon queries are performed. The conceptual hierarchy tree will be used to interpret the search results and
compute the threat assessment. The leaves of the visual hierarchy tree are labeled with boundary sequences.
Each subtree corresponds to a cluster. For each cluster there is a designated member weapon called cluster
representative. Each intermediate node is labeled with the convex hull sequence of the weapon which is the
representative of the cluster that corresponds to the subtree rooted at this intermediate node. Diameters of
clusters visited on any path from the root to a leaf are monotonically non-increasing, where the diameter of a
cluster is defined as the maximum distance between any of its members. This labeling facilitates fast search on
the visual hierarchy tree.

4. SEARCH

Arslan et al.2 define the weapon identification problem as the following search problem:
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Given an input image object, find in an ontology, a weapon or a group of weapons with significant
similarity to the input.

Arslan et al.2 present a method that is based on traversing the conceptual hierarchy tree. This method compares
the CH of the query image with the CH at an intermediate node using cyclic sequence alignment, and explores
the subtree rooted at this node only if there is “significant” similarity between the two CHs. This method relies
on experts’ distributing CHs over intermediate nodes. The present paper relaxes this requirement by using an
additional tree (visual hierarchy tree) which is constructed by clustering the CHs of weapon shapes.

We assume that the firearm ontology is complete, and its conceptual hierarchy (Tc) is available. Another
assumption is that a visual hierarchy (Tv) that is “close” to Tc has been generated. We also assume that there
are additional links from Tv to Tc such that for every leaf u, in Tv u is linked to a unique leaf v in Tc if u and v
have the same label (i.e. they correspond to the same weapon). We call these links leaf-connectors. These leaf
connectors can easily be created by processing Tc and Tv.

Once weapons are found as a result of a visual search, the interpretation of the results occurs in the conceptual
hierarchy tree. This is because the query may match multiple weapons with different probabilities, and relevant
attributes of matching weapons may be needed to evaluate results and determine the corresponding level of
threat. We propose the following algorithm for this problem:

Algorithm IdentifyAndReport

Step 1. Generate convex hull and boundary sequences from the image of the query object.

Step 2. Perform a visual search on the visual hierarchy tree Tv by using cyclic sequence alignment

between the query object and labels (sequences) of the nodes in Tv. Let M be the set of leaves in Tv

that matches the query (i.e. whose sequence similarity is higher than a given threshold).

Step 3. Locate leaves in Tc by following the leaf connectors from Tv . Find all lowest common

ancestors of arrived nodes by tracing ancestors bottom up. Generate a summary report. Determine and

output the threat level.

Figure 2. Algorithm that identifies a weapon and generates a report

Step 1 of the algorithm uses CH and boundary extraction, and processes them to generate sequences as
described in Arslan et al.2

For Step 2, Arslan et al.2 perform a branch-and-bound type of search by comparing node labels with the
query sequence at each node, and exploring only those sub-trees that may yield a match. Thus the search is
narrowed down to a few clusters. In the present paper we propose a similar approach. Once matching clusters
are identified, a more rigorous match can be done at the leaf level. For each leaf, in an explored cluster cyclic
sequence alignment10 is performed between the CH sequences first. If the resulting similarity score is larger
than or equal to a given threshold, boundary sequences are also aligned cyclically by using an efficient method
developed in.2 A leaf in Tv is identified as a match if (in addition to the convex hull similarity) the boundary
similarity to the query is also larger than or equal to a given threshold.

In Step 3, leaf connectors from matching leaves in Tv are followed to the leaves in Tc. After these leaves are
located in Tc, their common ancestors are found, and reported. We note that each ancestor can have a different
probability calculated from the degree of shape similarity for their descendants to the query. This yields the
following problem: Given n leaf nodes with their probabilities in Tv, find most likely ancestor(s) of arrived leaves
in Tc. This problem is addressed in Section 8.

We note that the search in our method goes beyond a similar shape search because all potential matches in
the conceptual hierarchy are located and threat levels are calculated by using a rich set of attributes applying
these matches.

Cyclic sequence alignment of two sequences of length Θ(n) takes O(n3) time if we follow a naive algorithm.
There exists a O(n2 log n)-time algorithm10 for the problem. Arslan et al.2 define a variation of cyclic sequence
alignment for boundary sequences, and present a fast algorithm for the resulting problem. Their algorithm runs
in O(c3 + g3 + n2) time if each of the two input shapes have c convex hull vertices, g segments of the boundary,
and if their boundary sequences are of length O(n). In practical settings c < g << n, therefore we develop and
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use algorithms based on cyclic sequence alignment algorithms proposed by Arslan et al.2 Search in the visual tree
Tv examines only a fraction of nodes in the tree because CH matches are used as a filter before exploring subtrees
whose roots are labeled with cluster representatives (see Fig.7). The query is compared to cluster representatives
and if there is no significant match the entire subtree is excluded from the search.

5. CONCEPTUAL ONTOLOGY HIERARCHY

The conceptual ontological hierarchy of firearms was developed within the framework of Ontological Semantic
Technology (OST). OST was intended for natural language processing8,12,15 and thus includes a combination of
dynamic and static knowledge resources discussed in,8,12,15 but which are not relevant in this context.

An ontology is language-independent and contains information about the general world as it may be referred
to in any text, as well as information from all relevant subdomains for a given application (e.g., medicine, law).
Additional knowledge can come from previously processed information as stored in the InfoBase, as well as
language-independent common-sense rules. Simplistically, it can be conceptualized as what the system knows
about the world.

For the current application, we developed an ontology of firearm concepts, which represents the relevant
information about firearms. Ontologies are typically represented as acyclical connected graphs (trees). The
firearms ontology is a branch of a general ontology, attached as a child under the ARTIFACT concept. The
ontology will be broadened to include all weapons in future iterations of this project. For the current application,
we leverage this knowledge with a focus on threat assessment. The ontology is formatted in XML, compatible
with OWL (RDF), and is handled by an editing tool developed in Java.

Each node in the ontology is a concept: either a terminal node (a leaf) in the tree, corresponding to a specific
firearm (e.g., AK 47, Colt 45), or an intermediate class of weapons (e.g., personal weapon, assault rifle). Each
concept has a unique name and a set of properties. Each concept inherits the properties of its superordinates
and all the descendants of a concept inherit its properties e.g., all the descendants of REVOLVER inherit the
property has object as part(firearm cylinder). Descendant concepts have unique properties not inherited from
their parent concepts. If a property inherited from a parent concept conflicts with a more specific one, the more
specific property overwrites the inherited one.

For the current stage of our research, we do not require a separate natural language lexicon that is mapped
into this branch of our ontology. But for future extensions that are envisaged to integrate visual and textual
input for threat assessment, all terminal concepts will receive complementary lexicon entries with a special rule
base for common abbreviations of the names of makers and types of guns. Furthermore, the lexicon will be
completed with generic terms for firearms and firearm types that are mapped onto the lowest possible branch
in the ontology. As usual in OST, in processing the lexical items are understood to refer to the concept they
are mapped onto, as well as any of its children. We anticipate very interesting research questions to be posed,
once we integrate visual and natural language input, including heuristics for identifying as the same firearm and
specifying its type for a firearm that was initially referred to only as ”gun,” but, for example, later called a
”shotgun” and brought in connection with a certain caliber and/or number of shells to be reloaded: ”Hand me
more of the 12-gauge!”

The overall hierarchical structure of the current firearm ontology as part of the OST ontology is that of a
directed graph (see Fig. 3), a class of objects that is mathematically well understood and for the handling of
which a large variety of algorithms is available. Our current proof-of-concept ontology has about 300 actual
weapons (terminal vertices), as discussed above.

In order to decide which properties of the guns to capture we determined which of them are commonly
assumed to differentiate the different levels of threat the firearms pose (see section 8 below). To illustrate the
choices, Fig. 4 shows the properties of an example. In that figure, the terminal concept for an assault rifle, the
AK 74, a development of the notorious AK 47, shows the properties we currently chose to capture (see section on
population) with special relevance for the threat assessment of the firearms. We also populated other properties,
if available, in anticipation of further refinements of our algorithms from future research.

As an initial operationalization of an overall metric for a gun’s threat level, we plan to sum up the varying fillers
of the properties with factors to reflect the general importance of the property in relation to the environment.
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heavy_machine_gun
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a21

anti_materiel_rifle

automatic_personal_firearm
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a13

light_machine_gun
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semi_automatic_pistol

revolver

shotgun
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a26
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Figure 3. WEAPON branch of the conceptual ontology with firearm leaf nodes marked with short names for convenience

AK 74

is a assault rifle

discharge type automatic semi automatic single shot

weight >3.2 3.4<

length 943 >490 943<

cyclic rate 700 >650 700<

muzzle vel 900 >735 900<

effective range 625

has object as part

firearm barrel

caliber mm 5.45

length 415 >210 415<

firearm magazine

magazine type detachable external

magazine size 30 45

firearm stock foldable

Figure 4. Partial terminal concept properties for the AK 74 assault rifle (a6 in 3)
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In addition, the structure of the conceptual ontology reflects the main assumptions of gun laws in the United
States , reflecting mainly the handling qualities of longer and shorter guns and the orthogonal property of type
of discharge, and the results of the few studies on the topic that we identified (see section 8). This generated a
conceptual ontology structure, in which the guns are already grouped according the threat-relevant types.

6. ONTOLOGY POPULATION

Since our system requires the organization of the information in more than one hierarchical structure, we keep the
unstructured information separated from the hierarchical structures. In order to edit and insert information we
developed a content management system, in which the unstructured information is stored in a database and the
data in the database is then linked to the particular nodes of the ontologies, according to particular attributes.
The content management system provides two main ways to edit the informations: manual insertion of the data
through an interface to the database and a semi-automatic system that allows us to acquire and edit a large
amount of information with minimal user interaction.

The manual insertion of data is supported by an interface which performs consistency checks on the data
format. The automatic population of the ontology allows the user to import data from HTML pages or other
databases.

Since we use different sources to populate the ontology we expect that some of those sources contains infor-
mation that may already exist in our database and may also conflict with other information in the database.
Because some sources may be more reliable than others, we allow the user to specify a trustworthiness value for
each source, so that information that already exist in the database will be overwritten only if the actual source
has a rank greater or equal to the one associated to the information in the database. This method allow us to
keep our data updated avoiding reduplication and ensuring reliability.

What follows is a brief description of the process for the automatic population of the ontology.

Step 1. The user inserts the URI of an HTML page and a trustworthiness value. The trustworthiness
value can be: “Low” the lowest value associated usually when the source is not well known, “Medium” is a
medium value used when the source is reliable end edited by professionals, “High” is the maximum value
usually used only when the source is the manufacturer or a government organization. After the user input,
the system performs a parsing of the HTML code in order to extract tables and lists. This is because,in
HTML pages, usually the data are organized using such structures. The extraction of tables and lists is
meant to make easier the subsequent information extraction operation. However we expect to deal also
with data structured in different ways, thus we allow for this feature to be switched off, allowing the user
to fully control the filtering criteria.

Step 2. The output of the previous filtering operation is presented to the user. At this time, the user
defines new filters using regular expressions. For each expression, the system defines a number of capturing
groups and each one of these group is linked, by the user, with the corresponding attribute of the database.
The information is thus extracted and inserted in the database. The insertion of the information in the
database will result in an insertion and update operation throughout the database. However the update
operation will be performed only if the data to be inserted is associated with a trustworthiness value greater
or equal to the one of the record in the database that has to be updated.

The data is then inserted in the ontology’s hierarchy according to relations defined on the attributes of
the database. Thus the objects are updated or added to the hierarchy automatically. With this system of
automatic population we added more than 3000 skeleton entries to our ontology, by extracting information from
“Wikipedia.” By processing in the same way manufacturer web pages and databases built by professionals, we
were able to both add new data to our system and validate the data inserted from other sources. These skeleton
entries currently contain only the name of the weapon and its position within the hierarchy; these entries will
be filled with attributes, like images, and meta information.

Usually in web pages that contain huge amounts of information, the data are wrapped in HTML code that
is automatically generated and therefore characterized by patterns. Hence it is possible to extract data from
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those pages by identifying those patterns. The problem is that the patterns from one web page to another may
be completely different. To ensure reliable data extraction, we first filter standard patterns that are in almost
any web page: tables and lists. After this operation, we use user interaction to identify particular patterns.
There are also automated methods that allow for the identification of particular patterns in different web pages.
Those techniques usually use similarity and statistical calculation to identify the patterns and extract data.
However the data extracted using fully automated methods is sometime characterized by noise and sometimes
those methods lead to a loss of data. The update and/or population of the ontology is an operation performed
offline and with a very low frequency, which is the reason we chose to use a non fully automatic method which
allows for a more precise and reliable extraction of information.

Currently, within the 3000 concepts we have acquired, about 385 have images associated with them, and 31
are complete with all the attributes needed for the application of the algorithms described in the paper. All
studies presented in this paper were performed on this subset of the ontology.

7. VISUAL AND CONCEPTUAL HIERARCHIES

Our hypothesis is that there exists a clustering algorithm that yields a visual hierarchy tree that is “close enough”
to the conceptual hierarchy tree such that a visual search for a given image can be done on the visual hierarchy
tree and the evaluation of the search can be carried out in the conceptual hierarchy tree for identifying the threat
posed by the weapon from the query image.

A number of hierarchical clustering algorithms could be applied for generating sequence of visual hierarchies.
For the present illustration of the new approach we use two clustering algorithms to create visual hierarchy trees.
The first one is the UPGMA program. For the conceptual hierarchy tree shown in Fig. 5, the UPGMA program5

creates a visual hierarchy tree shown in Fig. 5 for part of the weapon ontology whose conceptual hierarchy is
shown in Fig. 3. The convex hull similarity score between two weapons is the optimum alignment score between
their convex hull sequences divided by the average length of these convex hull sequences. This yields a number
in [0, 1]. By subtracting this value from 1, we obtain the convex hull distance between two weapons, which is
also in [0, 1]. We define the boundary similarity score and boundary distance between two weapons similarly and
use sequence similarity score (for both CHs and boundaries) normalized in [0, 1] as the degree of similarity, and
also for match probability. In generating the tree in Fig. 5, convex hull distances of weapons are used with the
UPGMA program.

For the search algorithm in Fig. 2, a cluster representative is needed at each intermediate node. This can be
done for each intermediate node p by arbitrarily selecting a leaf from the subtree rooted at p.

Figure 5. Clustering of 31 weapons and their visual hierarchy tree generated by using the UPGMA program5

We also develop a new algorithm for creating a visual hierarchy tree based on Gonzalez’ clustering algorithm.6

Given an integer k, this algorithm creates k clusters with the objective that the maximum diameter over all
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Algorithm Gonzalez((G,E,W),k)

Graph G has vertices V = {v1, v2, . . . , v|V |}, edges E with weights W (add a new parameter t)

precondition: G is a complete graph, and k < |V |
Set B1 = V (initialize T with vertex u1)

Pick one vertex in B1 and label it head1 (make the vertex vt the head head1)

for j = 2 to k do

Let vi be a vertex in Br where r in [1, j − 1]

whose distance to the head of the cluster Br is maximum

Move vi to Bj (create and connect a new node in T that corresponds to cluster j) and label it headj
For all vl in {B1, B2, . . . , Bj−1}, move vl to Bj if its distance to vi is not larger than the distance

to the head of the cluster it belongs (add edges from source and destination nodes in T)

Figure 6. Gonzalez’ clustering algorithm6 which approximates k-clustering to minimize maximum cluster diameter with
modifications given in parentheses for creating a hierarchy tree T

k clusters is minimized. This optimization problem is NP -hard.6 Unless P = NP , there does not exist a
polynomial time algorithm for this problem. However, Gonzalez’ algorithm guarantees k clusters with maximum
cluster diameter within a factor of two of the minimum possible. This algorithm is shown in Fig. 6.

We modify it to create a tree T , which will be a visual hierarchy tree for the clusters (visual hierarchy tree
Tv for the ontology): The distances between vertices are the convex hull distances between the convex hull
sequence-labels in these vertices. The head of cluster B1 is chosen as vertex vt using added parameter t (this
parameter allows creating hierarchy trees with different root). T is initialized with a single vertex u1. Whenever
the algorithm creates a new cluster Bj with an element moved from cluster Br we create a new vertex uj with
a directed edge from ur to uj in T . Whenever the algorithm moves elements from cluster Bp to cluster Bq, we
add a directed edge from up to uq . After the algorithm terminates, we postprocess the created graph as follows:
if there are multiple paths between two nodes x to y we then delete the last edges coming into y on these paths,
and add a directed edge from x to y. By this construction and postprocessing, we always obtain a tree.

Gonzalez’ algorithm aims to minimize the diameter (the longest pairwise distance) within clusters. This is a
desired feature for search because placing similar objects in the same cluster narrows down the search to relevant
subtrees pruning out other unfruitful ones for a given query.

When we use Gonzalez’ algorithm, we specify a representative (parameter t) for the first cluster (the root
cluster), and the number of clusters (parameter k). With our modification, the resulting tree has k nodes
excluding the leaf nodes. Based on these parameters a number of trees are possible. In Fig. 7, we show two
visual hierarchy trees obtained with parameters weapon a25 and number of clusters 4 (Part (a)), as well as
weapon a11 and number of clusters 5 (Part (b)). The second parameter should not be smaller than the number
of subtrees in the conceptual tree. Our experience is that increasing this parameter does not necessarily increase
the height of the tree because of the postprocessing rule that creates direct edges when there are multiple paths
between two nodes.

The search is done in the visual hierarchy most close to the conceptual one, but results are finalized in
the conceptual hierarchy tree. The leaves found in the virtual hierarchy identify the leaves in the conceptual
hierarchy, then, following the edges bottom up, common ancestors are located and also reported in the summary.
For effective and efficient results through our approach the visual hierarchy tree that is used and the conceptual
hierarchy tree for the weapon ontology should be close. The tree edit distance3 is applied for measuring the
distance between the trees. Fig. 8 shows the edit operations on a tree that can be used to transfer one tree
to another. Minimum possible total weight of a sequence of such weighted operations is the tree edit distance
between two trees. The search space for finding a closest visual hierarchy tree to the conceptual hierarchy tree is
very large. For example, the two parameters for our modified Gonzalez’ clustering algorithm define a very large
set. The trees can be systematically generated and compared with the conceptual hierarchy tree one at a time.
In the present paper, for illustrative purposes, we only consider the three trees in Fig.s. 5, and 7. We compare
each of these trees with the conceptual hierarchy tree shown in Fig. 3. We use the tree edit distance program
in.13 The closest of the three trees is the one in Fig. 7 Part (b).
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Figure 7. Visual hierarchy tress obtained by using modified-Gonzalez clustering algorithm with parameters: a) weapon
a11 is the representative of the first cluster, and k = 4 is the number of intermediate cluster nodes, and b) weapon a25 is
the representative of the first cluster, and k = 5 is the number of intermediate cluster nodes

Figure 8. Edit operations on a tree: (a) Changing node label x in T1 to y yields T2; (b) Deleting subtree with root label
y in T1 yields T2; (c) Inserting subtree with root label y in T2 yields T1

8. THREAT ASSESSMENT

Recall that Step 3 of Algorithm IdentifyAndReport in Fig 2 solves the following problem: Given n leaf nodes
with their probabilities in Tv, find most likely ancestor(s) of arrived leaves in Tc. Solving this problem efficiently
can be a topic for future research. When a weapon is detected, a naive solution to this problem assumes reverse
links in the conceptual hierarchy tree and that these links are followed starting with the matching leaves arrived
at from the result of a visual match, and all common ancestors are located bottom up. During this process, the
rich set of attributes of these common ancestors, in the conceptual hierarchy tree, provides information for a
possible weapon and its potential for causing harm to the public. The details of the threat assessment as part
of this step based on weapons’ attributes are being developed along with the ontology. Section 9 shows sample
outcomes of this step on several queries.

All things being equal, in particular independently of the handling capabilities of their bearer, any firearm
type poses a threat that is inherently different from the other types. We also propose that each ontological
firearm class has such an inherent threat level that differs from those of others. This section sketches a first
operationalization of these differences in threat as another goal for our system.

Because the experience in handling of any given gun by the perpetrators is unknown, currently the only factor
beyond the inherent threat of a given type (or class of types) of firearm is the environment in which the firearms
are handled. To provide extreme examples, in unobstructed outdoor surroundings a single-shot pistol can cause
significantly less harm than a heavy machine gun, while an unwieldy semi-automatic assault rifle with extended
stock is less of a threat than a semi-automatic pistol in a small crowded room.

Different levels of perceived threat are an important basis for state and federal gun regulations, which reflect
some basic assumptions about inherent threat levels of firearms form one basis of our initial metric. The main
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gun control laws of the United States, enforced by the Bureau of Alcohol, Tobacco, Firearms, and Explosives,
are Title II (26 U.S.C. ch. 53; National Firearms Act of 1934, revised 1968, 1986), on banned weapons, mainly
machine guns and short-barreled rifles and shotguns), Title I (18 U.S.C. ch. 44; Gun Control Act of 1968), and
the Federal Assault Weapons Ban of 1994 (H.E. 3355, 103rd Congress; expired 2004).

Beyond legislation, there is scant literature on the inherent threat of firearms. One study found that in
Milwaukee, WI, over a 4-year period in the 1990s, the 524 firearms used in homicides fell into the following
classes:7 handguns 89%, shotguns 5%, rifles 3%, unspecified 3%. The caliber of the handguns was predominantly
medium (.32 to 9mm: 69%), followed by small (.22 and .25: 25%), and large (.40 and larger: 7%). Interestingly,
the inexpensive, small-caliber Raven Arms MP-25 semi-automatic pistol accounted for 10% of the firearms used
and belongs to the class of “Saturday Night Specials” that were also targeted by Title I (see above). This
frequency with which certain gun classes were used in homicides is of limited relevance for our purposes though,
because few of these occurred in public spaces.

Another, more central, study focuses on a weapons instrumentality effect, very similar to our focus, namely,
“the impact of firearms on lethality while controlling for the effects of other situational, contextual, and demo-
graphic variables”. In contrast to one of the main assumptions of older gun legislation and in line with more
recent demands, this study, based on,21 found that automatic weapons are not significantly more lethal than
their semi-automatic counterparts”.9 An important caveat for this result is that the data this study is based on
did not allow for an assessment of number of victims per incident. It must be assumed that an attack involving
an automatic weapon can be lethal to more victims than one with a single-shot firearm. Other useful results
from this study rank shotguns above, but closely followed by, handguns, and above rifles in lethality. It needs
to be noted, though, that lethality is not our concept of threat, as we mean more generally the ability to cause
harm, including non-lethal injury.

In sum, gun laws specify certain properties of firearms that determine whether they are outright banned or
must be controlled, with the implicit assumption that these properties make the firearms pose higher threats than
other firearms. These properties are also emphasized in the studies cited. Thus, the threat posed by a weapon
as such is determined by a number of partially interrelated factors. In overall descending order of importance,
in this initial sketch we assume these to be:

• [t] type of discharge: single-shot/semi-automatic/automatic

• [r] (effective) rate of fire

• [c] caliber (diameter of ammunition)

• [ms] magazine size

• [mt] magazine type: fixed/detachable

• [ma] magazine attachment (external/internal)

This leads to our initial formula for the inherent, environment-independent, threat (T) of a firearm (f):
Tf = t ∗ f + r/2 + c ∗ 10 + ms ∗ (mt + ma) where f is 2.5 for automatic, 2 for semi-automatic, and 1 for single
shot, mt is 1 for detachable and 0.5 for fixed, and ml is 1 for external and 0.5 for internal.

The following properties also have a strong influence on the threat of the firearm in relation to the environment
in which it is used and their contribution is operationalized differently in the current work:

• [v] muzzle velocity/effective range

• [l] overall length (handling and ease to conceal)

• [w] overall weight

• [p] projectile: bullet/shot/etc.

• [s] stock: folding/telescopic/etc.
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As mentioned, we are aware of the differentiating dimension of enclosed (small room) vs. open handling
environment (very large room, outdoors; an environment significantly more dangerous than an indoors one,9),
mainly reflecting differences in overall size of the firearms and effective range. This, of course, intersects with
discharge type and lock type, a lock firing from an open bolt, resulting in lower accuracy, which is a difference
that is again mostly relevant for crew-served heavy machine guns and ignored here.

Our conceptual ontology hierarchy agrees with most firearm taxonomies. But in addition it ranks its classes
as per the environment-dependent hierarchy below and distinguishes personal and crew-served firearms. The
latter have much higher firepower but handling qualities that make them largely irrelevant in the type of scenario
our system is currently envisioned for. Among personal firearms we distinguish long guns, handguns, automatic
personal firearms, and anti-materiel rifles, the latter again considered marginal for our application, but with very
high threats at very long ranges. Among long guns, we distinguish rifles and shotguns, with crucially different
threat levels depending on the environment, the shotgun being most useful at intermediate range and rifles at
long range. Among handguns we distinguish revolvers and semi-automatic pistols with equally high threat in
enclosed environments and a higher threat from semi-automatic pistols because of type of discharge (slightly
counterbalanced by ease of maintenance and handling of revolvers).

Among the class of automatics, important for our system as also reflected by their ban in the United States,
we distinguish assault rifles, light machine guns, and sub-machine guns, with assault rifles generally carrying the
highest threat because of their combination of high rate of fire and ease of handling in enclosed and medium-open
environments. Submachine guns are a somewhat obsolete category, while light machine guns are hard to handle
but carry a high threat in open environments and where accuracy is important.

With these intersecting properties, we propose the following hierarchies of threat in descending order for open
environments and, conversely, in ascending order for closed environments. In other words, the higher in the list
a firearm class, the more dangerous it is indoors; the lower a firearm class in the list, the more dangerous it is
outdoors. Given in parentheses after each class is first the factor for indoor threat and then for outdoor threat.
This factor will be multiplied with the outcome of the initial formula:

semi-automatic pistol (10/2)/revolver (9/2)/shotgun (8/4)/sub-machine gun (6/5)/rifle (4/7)/assault rifle (4/7)/
light machine gun (3/9)/heavy machine gun (2/10)/anti-materiel rifle (1/10)

Another threat factor we are not addressing at the present stage of our research, the ballistic threat of the
individual shot, depends on more than just the round itself. Variables include its composition, shape, caliber,
mass, angle of impact, and impact velocity.

To assign threat values to intermediate classes, as well as to firearms that are not uniquely identified, two
methods are feasible: We can assume the worst case and assign a class the threat of its most dangerous member
and an unidentified firearm the threat of its most dangerous possible type. The other method would be to
average the threat of the firearms for the classes and through inverse inheritance14,16 give the ancestor class
this average threat. Similarly for unidentified guns, we would average the threats of the possible firearms that
it could be, factor in the probabilities, and give the firearm this assumed threat. The choice between these two
methods should be given to the user.

Given our initial threat algorithm and our factor for the environment in relation to firearm classes, the
following are threat values for selected gun classes in relation to environments and populated through inverse
inheritance of the threat values of the guns in these classes by the class itself. The first pair of figures gives the
average and worst-case threat of the class, the second pair average indoor/outdoor threat:

assault rifle: 357.13/513.10, 1429/2500
shotgun: 527.37/648.20, 3164/3692
semi-automatic pistol: 124.50 / 192.00, 1245/124.50

The above threat values are calculated by applying the formula for Tf . The values used by the variables in
this formula are taken from several online sources including Wikipedia. Examples, for three of our weapons are
given below.
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t r c ms mt ma Tf

AK 74 (assault rifle) 2.5 700 5.45 30 1 1 467
Benelli Legacy (shotgun) 1 30 18.3 3 0.5 0.5 202
Arsenal P M02 (semi-automatic pistol) 2 45 9 15 1 0.5 137

The formula for Tf as quoted above is an initial approximation based on the literature cited above and in relation
to the properties of the firearms in our sample. Its refinement is subject of further research. The lower and the
upper bounds for the indoor and outdoor threats depend on the sample space and the formula for Tf . Currently
the upper bound is estimated at 6415.

9. EXPERIMENTAL RESULTS

The parametric active convex hull model (PACHM) and the Shrinking-Active Contour model on the Exact
Solution (S-ACES), presented in Section 2, are coded in Java and employed to extract the CHs and the boundaries
of about 50 weapons.

We use the tree edit distance program described in Pawlik and Augsten13 with equal weight 1 for each edit
operation. We converted our trees to the required input format (the {root{}{}...{}} representation). In doing
so, if two subtrees from the compared trees are isomorphic and they have identical leaves, we generate, and use
the same names; otherwise, different names are generated. We order the children of each parent by alphabetical
order. This results in many different names in intermediate nodes within each tree thus increasing the tree edit
distances. The tree in Fig. 5 is very far from the conceptual hierarchy tree because it has many internal nodes.
The tree edit distances from the conceptual tree is 35 for the tree in Fig. 7 Part (a), and 33 for the tree in Fig.
7 Part (b), which is the closest one and is used for search of the query object.

We perform tests on several queries to illustrate and verify the ideas experimentally. We take an existing
weapon as a query object. Since the visual hierarchy in Fig. 7 Part (b) is the closest to the conceptual hierarchy
tree, we used this tree in our tests. Fig. 9 summarizes the results. Our search algorithm compares the query
with the cluster representatives. Only those clusters whose representatives are similar enough to the query are
explored; others are pruned. The comparisons are done between the CH sequences, and a threshold percent
similarity (we used 75%) determines if the weapons are visually similar enough. This requirement translates to
convex hull similarity score 0.75 or more. For clusters that are explored every leaf is compared with the query.
This comparison involves both CH sequences and boundary sequences. For a leaf to be reported as a match
to the query, the CH sequence similarity must be at least 75%, and the boundary sequence similarity must be
at least 65% (the latter requirement translates to boundary sequence similarity score 0.65 or more). Fig. 9
summarizes the results.

When the query weapon is a7, only the cluster with representative a25 has a CH similarity with a7 meeting
the similarity threshold 75%. In this cluster, every leaf’s CH is compared with that of a7. Leafs a5, a6, a7,
a8, a16, a20, a25 have convex hull similarity with the query meeting this threshold. Among these only a7, a5
and a20 have boundary similarity with the query meeting the 65% similarity threshold. We combine CH and
boundary similarity percentages with equal weight, and report combined percent similarity to the query. The
results are listed in the last column in the table in Fig. 9. According to these results, the query weapon was
recognised as a7 with 100% of confidence. However, if we would like to consider all possibilities, following the
links in reverse in the conceptual hierarchy tree in Fig. 3 starting with a7, a20, and a5, the conclusion would be
that the weapon is either a sub machine gun or an assault rifle, and following further up in the hierarchy that
it can only be an automatic personal firearm, which posses a significant threat, which can now be quantified
in terms of the algorithm and factors outlined at the end of Section 8. Similarly, when the query is a11, only
the cluster with representative a23 is similar enough in CHs with the query. Weapons a9, a10, a11, a12, a23,
a26, a27, a29, a30 are all found to have close enough CH similarity with the query. However, comparing also
boundaries only a11 and a12 have the required boundary similarity. The combined percent matches are reported
for this case, too, in the last column of the table in Fig. 9. The query was correctly recognized as a11 with
100% of confidence. However, if we would like to consider all possibilities, following the links in Fig. 3 starting
with a11 and a12 the conclusion would be that it is a semi-automatic pistol, which poses a low level of threat,
according to the values at the end of Section 8. The third query is a broom (an object with a long “neck” which
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Figure 9. Four illustrative queries and results

could conceivably be confused with the barrel of a gun). It has convex hull match (above the threshold) with the
cluster whose representative is a13. The leaves in this cluster have been compared with the query, and none of
these comparisons generated a combined (CH and boundary) match meeting the threshold percent score. Hence
our system would not mistake a broom for a gun. The last query in Fig. 9 is a Howell Automatic Rifle. This
weapon is not in the experimented part of the current ontology. The search finds that it has convex hull similarity
beyond the threshold with the cluster representatives shown in the figure. All weapons in the two clusters have
all been compared with this weapon. However, no matches have been found when boundary sequences are
compared although 15 of them (a5, a6, a7, a8, a16, a20, a25, a9, a10, a11, a12, a23, a27, a29, a30) have high enough
convex hull sequence similarity with the query.

The searches performed on the crossest visual tree are very fast. On a 1.6GHz laptop computer the search
times are 16ms for the first query, and 46 ms for the second query. The search takes 31 ms for the third, and 46
ms for the fourth query. These times exclude CH and boundary extraction, and sequence generation times for
the query (900x400 pixels), which take approximately 0.353s on a 2.3GHz machine.

10. CONTRIBUTIONS AND FUTURE WORK

The major contribution of this paper is the development of the concept for generating visual hierarchies from
set of objects (weapons in the present case) extracted from images. The idea extends further to presenting the
visual hierarchies as a sequence converging to a conceptual hierarchy. The next new idea is the use of the visual
hierarchy most close to the conceptual as an environment to search for a query object. Such retrieved objects most
close to the query are projected to the conceptual tree, where the threat assessment is calculated with a newly
developed formula. This is done by finding the ancestors of the projection. Another theoretical advancement
is the adaptation of the Gonzalez’ algorithm6 for visual hierarchy generation. The practical contributions are
in the use of software engine for automatic ontology population, which led to enrichment and extension of the
ontology reported in2 to 300 nodes with names and images and 3000 with names only.

The theoretical concepts were validated by performing experiments with a portion of the ontology containing
31 nodes shown in the figures throughout the paper. The experimental results shown in Section 9 are obtained
from the visual hierarchy tree most close to the conceptual one. The same experiments were done on the
remaining visual hierarchy trees. Comparing all of the results, it was observed that the closest visual tree offers
the best results when both accuracy and speed are important.

The future work will continue with the further enrichment and expansion of the first weapon ontology through
including visual and meta data about the munitions used and the inherent particles characterizing every weapon.
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Optimization of the visual hierarchy construction is the next goal, which implies the following one regarding the
fastens convergence of the sequence of visual hierarchies in an effort to further decrease the speed of search
preserving the high accuracy of retrieval and threat assessment.
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