Integration of Functional Oxides and Semiconductors:

Magnetism and Epitaxy

Alex Demkov
The University of Texas at Austin

Texas A&M University, Commerce, November 2013
People involved:

Hosung Seo Miri Choi Patrick Ponath Kristy Kormondy

Agham Posadas Chandrima Mitra Chungwei Lin Richard Hatch
Outline of the talk

• Introduction
• Magnetism in Oxides
• Molecular Beam Epitaxy
• COX
• LaCoO$_3$ on Si
• Conclusions
Advances in Oxide Epitaxy

1 monolayer Sb in (100) Silicon

2 nm

1 monolayer La in (100) SrTiO₃

2 nm

La³⁺ Sr²⁺ Ti³⁺/Ti⁴⁺

500 nm

LaTiO₃ in SrTiO₃

Superlattices by design

Epitaxial oxide on semiconductors

SrTiO$_3$ on Si

Model

Experiment

BaTiO$_3$ on Ge

Fig. 1. Alkaline earth and perovskite oxides heteroepitaxy on silicon and germanium. The figure illustrates our ability to manipulate interface structure at the atomic level using our $(AC)_n(ABO_3)_m$ structure series. The n/m ratio defines the electrical characteristics of this new physical system of COS in a MOS capacitor. In (A), $n = 3$, $m = 0$; in (B), $n = 1$, $m = 2$; in (C), $n = 0$, $m = 3$.

SrTiO$_3$/LaAlO$_3$ heterostructure:

Superconducting Interfaces Between Insulating Oxides

Magnetic effects at the interface between non-magnetic oxides

A. Brinkman*1, M. Huibben1, M. Van Zalk1, J. Huibben1, U. Zeitler2, J. C. Maan2, W. G. Van der Wiel3, G. Rijnders1, D. H. A. Blank1 and H. Hilgenkamp1

1Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
2High Field Magnet Laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 ED Nijmegen, The Netherlands
3Strategic Research Orientation Nanoelectronics, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands

*Present address: Physics Department, University of California, Berkeley, California 94720, USA

e-mail: a.brinkman@utwente.nl
Adaptive oxide devices

- Ferroelectricity
 - Ion diffusion
 - Polarization: Bi$_{4-x}$La$_x$Ti$_3$O$_{12}$, BaTiO$_3$
 - Capacitor, Schottky diode, Tunnel junction
 - Conductive filament
 - Resistance: Cr: SrZrO$_3$, TaO$_x$
 - Capacitor
 - Tunnel junction, Spin-transfer torque MTJ

- Redox
 - Resistance: Gd$_2$O$_3$, NiO

- Ferromagnetism
 - Magnetization: La$_{1-x}$Sr$_x$MnO$_3$/SrTiO$_3$, CoFe/MgO
Conceptual structure of the 3-D heterogeneous optoelectronic integrated system-on-silicon for an intelligent vehicle system’s variable signal-processing functions depending on the moving speed of the car.
Diverse Accessible Heterogeneous Integration (DAHI):

- Compound Semiconductor Materials on Si,
- Electronic-photonic heterogeneous integration
Transition metals

A transition metal is one which forms one or more stable ions which have *incompletely filled d orbitals.*

\[
\text{[Ar]} = 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6
\]

\[
\text{[Ti]} = [\text{Ar}]3d^24s^2
\]

\[
\text{[V]} = [\text{Ar}]3d^34s^2
\]
Perovskite oxides ABO_3

CaTiO$_3$, BaTiO$_3$, SrHfO$_3$, ...

Octahedral symmetry (O_h):

Ligand field theory

High spin Low spin
Fe$^{3+}$ (d5)

$E^S - E^T = 2J$
Molecular Orbital Theory

Important energies:

- crystal field splitting $10Dq$
- exchange energy J
- charge transfer energy Δ_c
Ferroelectricity

\[\Delta E = \frac{1}{2} \alpha_0 (T - T_0) P_x^2 + \frac{1}{4} \alpha_{11} P_x^4 + \frac{1}{6} \alpha_{111} P_x^6 \]
Molecular Beam Epitaxy

Epitaxy: ordered growth on a monocrystalline substrate
From two Greek words: “epi”-above and “taxis”-in ordered manner
MBE was invented in the late 1960s at Bell Laboratories by J. R. Arthur and Alfred Y. Cho.
Making Nothing: Vacuum Pumps

10^-2 - 10^-3 Torr

10^-2 - 10^-10 Torr

10^-7 - 10^-11 Torr

10^-3 - 10^-7 Torr
Vacuum Chamber

Flanges

Manipulators

Vacuum gauges

Transfer rods
Knudsen Cell

Martin Hans Christian Knudsen (1871 -1949)

E-gun evaporator
Quartz Crystal Monitor

Piezoelectric Effect in Quartz

No Stress
T Tension
C Compression

Silicon Atom
Oxygen Atom
RHEED
Theoretical methods

\[
\left(-\frac{\hbar^2 \nabla^2}{2m} + V(r) \right) \psi_i(r) = \varepsilon_i \psi_i(r)
\]

\[
\Psi(R, r) = \sum_{k=1}^{K} \chi_k(r; R) \phi_k(R);
\]

\[
H_e \chi(r) = E_e \chi(r)
\]

\[
[T_n + E_e(R)] \phi(R) = E \phi(R)
\]

\[
E_{KS}[n] = \varepsilon \left| \Psi \right|^2 = E_{KS}[n] + E_{\text{ion-ion}}[n] + E_{\text{ion-\text{ion}}}[n] + E_{\text{xc}}[n]
\]

\[
-\frac{\hbar^2 \nabla^2}{2m} + V_{KS}(r) \psi_i(r) = \varepsilon_i \psi_i(r)
\]

\[
V_{KS}(r) = V_{\text{ext}}(r) + \int \frac{n(r')}{|r-r'|} dr' + V_{XC}(r)
\]

\[
F_i = -\frac{\partial E}{\partial R_i} \quad \rightarrow \quad F_i = m_i \ddot{x}_i
\]

\[
H = -t \sum_{<i,j>, \sigma} c_i^\dagger \sigma \瑞典 c_j^\sigma + U \sum_{i=1}^{N} n_i^\dagger n_i^1 \quad \rightarrow \quad E_i = \varepsilon_i + \left(\Phi_i \right| \Sigma(E_i) - V_{\text{xc}} \left| \Phi_i \right) \approx \varepsilon_i + \Sigma_{\sigma} \left(\Phi_i \right| \Sigma(\varepsilon_i) - V_{\text{xc}} \left| \Phi_i \right)
\]
SrTiO₃/LaAlO₃ heterostructure:

COX: Crystalline oxide on semiconductor

SrTiO$_3$ on Si

Model

Experiment

BaTiO$_3$ on Ge

Fig. 1. Alkaline earth and perovskite oxides heterojunctions on silicon and germanium. The figure illustrates our ability to manipulate interface structure at the atomic level using our \((\text{AO})_n(\text{ABO}_3)_m\) structure series. The \(n/m\) ratio defines the electrical characteristics of this new physical system of COS in a MOS capacitor. In (A), \(n = 3, m = 0\); in (B), \(n = 1, m = 2\); in (C), \(n = 0, m = 3\).

Si and STO are very different!

A. Geometry:

Silicon

45 ° “rotation”

ABO₃

A-layer

B-layer

a_{Si}/(2)^{0.5}=3.84 Å
a_{STO}=3.905 Å

B. Chemistry:
Zintl intermetallics: SrAl₂

Zintl Alchemy

Edward Zintl (1898-1941)

tI10 SrAl₄ structure

fcc Al metal

SrAl₂ structure
SrTiO₃ deposition on Si

- Sr-assisted SiO₂ desorption
- ½ monolayer Sr on Si
 (Zintl template layer)

- Initial amorphous SrTiO₃ seed layer at 200°C (4 unit cells)
 Crystallize at 550°C
- Main SrTiO₃ deposition
 4x10⁻⁷ torr O₂ at 550°C
 Co-evaporation of Sr and Ti at 1 monolayer per minute
 20 unit cells (fully relaxed)
Integrating ferromagnets on Si (001)
Properties and applications $\text{La}_{1-x}\text{Sr}_x\text{CoO}_3$

- **Properties**
 - Co^{3+}: $3d^6$
 - 0.6 eV gap semiconductor
 - Non-magnetic at low temperature but paramagnetic at room temperature
 - **Epitaxial strain induces ferromagnetism**
 - Spin state transitions
 - Low, intermediate, high-spin
 - Metal-insulator transition when doped

- **Possible applications**
 - Electrode (Sr-doped)
 - Cathode material for solid oxide fuel cells
 - Epitaxial oxide electrode for perovskite multilayers
 - Gas sensors / catalysis
 - Magnetic semiconductor
 - Spintronics

Fig. 41. Phase diagram of $\text{La}_{1-x}\text{Sr}_x\text{CoO}_3$ for $0 = x = 0.50$; adapted from [247]. Co(III) = low-spin; Co(iii) = intermediate-spin; Co^{3+} = high-spin

- Fuchs et al., PRB 75, 144402 (2007)
- Rondinelli & Spaldin, PRB 79, 054409 (2009) NO
- Gupta & Mahadevan, PRB 79, 020406 (2009) YES
LaCoO$_3$

- Low spin (LS); $S = 0$
- Intermediate spin (IS); $S = 1$
- High spin (HS); $S = 2$

t_{2g}^* (W \approx 1.5 eV)

e_g^* (W \approx 4 eV)

DOS (a.u.)

*Low spin (LS); $S = 0$
• Half-metallic IS is stabilized beyond 3.8%.
• Experimentally, strained LCO on STO is insulating.
• Experimental critical strain is less than 3.8%.
Issues related to MBE growth of LCO on Si

• Direct deposition of La, Co on Si in oxygen at high temperature will form CoSi$_2$ and SiO$_2$
 – Incommensurate or amorphous \rightarrow Prevents epitaxy

• Phase formation range of LaCoO$_3$ requires both high oxygen chemical potential and high temperature
 – Typical MBE growth conditions using molecular oxygen (10$^{-6}$ torr) results in Co$^{2+}$ oxidation state

• To overcome these difficulties we will use an SrTiO$_3$/Si pseudo substrate
 – Use an epitaxial template layer \rightarrow SrTiO$_3$ on Si
 – Use activated oxygen \rightarrow atomic oxygen from rf plasma source
Growth of LaCoO$_3$ on STO/silicon

- Atomic oxygen
 - 300 W rf power
 - 1×10^{-5} torr background oxygen pressure
- Substrate temperature 750°C
- Co-deposition of La and Co with matched fluxes
 - 2 unit cells per minute rate
- Slow cooling in oxygen
 - 10°C per minute to 100°C

![LCO <110>](image1)
![LCO <100>](image2)
Cross-section TEM

LaCoO$_3$

8 nm SrTiO$_3$

6 nm SiO$_2$

Si
X-ray diffraction

30 nm LCO/8 nm STO/Si

LaCoO$_3$ lattice parameters
(bulk $a = 3.80$ Å)
$c = 3.77$ Å
$a = 3.89$ Å Strained to SrTiO$_3$ ($a = 3.90$ Å)

No secondary phases ($\text{La}_4\text{Co}_3\text{O}_{10}, \text{La}_2\text{CoO}_4, \text{CoO}$)

Core level spectra (XPS)

No Co metal detected in XPS
Spectra consistent with literature data for single crystal
Magnetization vs. temperature

Temperature (K)

Magnetic moment (emu)

$T_C = 85$ K

$H = 1$ kOe

Field cooled
Magnetization vs. field

\[\text{Magnetic moment (} \mu_\text{B}/\text{Co}\text{)} \]

\[\text{Magnetic field (kOe)} \]

\[T = 10 \text{ K} \]

Half-metallic IS is stabilized beyond 3.8%.
- Experimentally, strained LCO on STO is insulating.
- Experimental critical strain is less than 3.8%.
Supercells

$\sqrt{2} \times \sqrt{2} \times 2$
- 4 independent Co sites
 2 in-plane, 2 out-of-plane

$\sqrt{2} \times \sqrt{2} \times 4$
- 8 independent Co sites
 2 in-plane, 4 out-of-plane

$2 \times 2 \times 2$
- 8 independent Co sites
 4 in-plane, 2 out-of-plane

Identical site
Energy vs. strain: HS/LS mixed states

Band gap change as a function of strain

Energy (eV) vs. strain (%)

-4 -2 0 2 4

dyz, dxz dxy d3z2-r2

Cubic, Oh

D4h

Tensile

Compressive

D4h
Strain accommodation

- Corner-sharing octahedral network with relatively rigid CoO$_6$ units under epitaxial stress

\[\Delta_{TD} = \frac{(b_{in} - b_{out})}{|b_{in} + b_{out}|/2} \]
Bond lengths and angles

- **ΔTD (%)**

- **θ (°)**

- **θ₀ = 162.9°**

- **NM**

- **HS site**

- **LS site**

- **θ₀ = 162.9°**

- **θ in (°)**

- **θ out (°)**

- **strain (%)**
Voltage-switchable magnetoresistance in LaCoO₃

Normally nonmagnetic LaCoO₃ becomes ferromagnetic below 85 K under tensile strain.

No magnetoresistance above T_C for both voltage polarities.

Magnetoresistance observed only below T_C and for only positive voltage.

Critical voltage needed to observe magnetoresistance.

In collaboration with Ed Yu, UT Austin.
Summary

• First demonstration of epitaxial growth of magnetic LaCoO$_3$ on silicon.

• High quality crystalline LaCoO$_3$ layer epitaxially strained to underlying SrTiO$_3$ buffer (XRD, TEM, XPS), $T_C \sim 85$ K (SQUID)

• Beyond biaxial tensile strain of 2.5% local magnetic moments, originating from HS ($S=2$) states of Co$^{3+}$ ions, emerge in the LS Co$^{3+}$ matrix.

• The HS/LS state is insulating.

• The stabilization of the FM state is attributed to increased compliance of LCO when it has higher concentration of HS Co$^{3+}$ ions. Despite the energy cost to excite LS Co$^{3+}$ to HS state, LCO chooses this option and gains energy above tensile strain of 2.5% owing to the softness of the HS CoO$_6$ clusters.

• In contrast, compressive strain could not produce a magnetic state in LCO.