TENTATIVE SYLLABUS - BA 578-Online Business and Economics Statistics Business Administration and MIS Department Summer II 2012 (7/9/2012 through 8/9/2012)

Instructor:Dr. Chuck ArizeOffice Number:BA 326Office Hours:M & W 12.00 P.M. – 1.00 P.M.Phone Number:(903) 886-5691 (Office)Commerce Fax:(903) 886-5693E-mail:chuck.arize@tamu-commerce.edu

<u>REQUIRED TEXT:</u> Statistics Classnotes by Business Administration and MIS Department (Available in the university bookstores).

<u>PowerPoint:</u> In order to gain more understanding in the class note book, all of you **must go** through the PowerPoint of each chapter thoroughly. See course home for more information.

Recommended but NOT REQUIRED Text:

Anderson, Sweeney & Williams, Statistics for Business and Economics. Seventh or higher edition, ISBN: 0-538-87593-3, South-Western College Publishing.

IMPORTANT NOTICE

*******Net Profit from the sales of classnotes is used to fund the department's scholarships. Since 1994 we have given over 159 scholarships from that fund.

*** Note that this is a tentative syllabus meaning that I can change (a) certain dates for the exams and (b) certain topics to be covered.

*** Since this is a graduate statistics course, I will constantly assume that students have mastered undergraduate statistics work. My classnote covers the most relevant material, so a student may refer to other texts. However, I believe that a student can make an "A" using only the classnote book.

*** If you have not taken any statistics course in the last two years, my suggestion is that you borrow a statistics book from the nearest library to aid your understanding of my classnotes. However, I will focus on the classnotes in teaching the class.

*** Also, note that I do not return your graded paper, but upon request I will be able to tell you what you missed on a test via e-mail. (Request period is 3 days after receiving exam grade)

*** Although you have your classnote book as well as other books, available in the library, you are not permitted to copy from your textbook due to copyright protection for author and publisher.

<u>Course Description</u>: A course dealing with statistical concepts including measures of central tendency and dispersion, probability distributions, the Central Limit Theorem, sampling, estimation, hypothesis testing, analysis of variance, correlation and regression analysis.

Course Prerequisite: GBUS 501 or acceptable undergraduate course in statistics.

Course Objectives: The objective of this course is to provide a foundation for the graduate business student on basic principles of statistics to include measurements of location and dispersion, probability, probability distributions, sampling, estimation, hypothesis testing, regression and correlation analysis, and multiple regression. The following are specific objectives for the course that the student will:

- 1) Learn how to calculate and apply measures of location and measures of dispersion -- grouped and ungrouped data cases.
- 2) Learn how to apply discrete and continuous probability distributions to various business problems.
- 3) Understand the hypothesis testing:
 - 3.1 Be able to perform Test of Hypothesis
 - 3.2 calculate confidence interval for a population parameter for single sample and two sample cases.
 - 3.3 Understand the concept of p-values.
- 4) Learn non-parametric test such as the Chi-Square test for Independence as well as Goodness of Fit.
- 5) Understand regression analysis:
 - 5.1 Be able to compute and interpret the results of Bivariate Regression
 - 5.2 Be able to compute and interpret the results of Multivariate Regression.
 - 5.3 Be able to compute and interpret Correlation Analysis
 - 5.4 Be able to perform ANOVA and F-test.
 - 5.5 Be able to understand both the meaning and applicability of a dummy variable.
 - 5.6 Be able to understand the assumptions which underline a regression model.
 - 5.7 Be able to perform a multiple regression using computer software.

***For more details concerning the above course objectives, see the last page.

<u>Services for Students with Disabilities</u>: The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you have a disability requiring an accommodation, please contact:

Office of Disability Resources and Services Texas A&M University-Commerce Halladay Student Services Building Room 303 A/D Telephone: (903) 886-5150 or (903) 886-5835 FAX: (903) 468-8148

Grading Policy:

Grade Component	
Midterm	30%
Final	50%
Journal Article & Project	20%

<u>Average Range</u>	<u>Grade</u>
90%-100%	А
80%-89%	В
70%-79%	С
60%-69%	D
Below 60%	F

<u>**Classroom Demeanor:**</u> "All students enrolled at the University shall follow the tenets of common decency and acceptable behavior conducive to a positive learning environment." See Student's Guide Book.

<u>Academic Integrity:</u> Academic integrity is the pursuit of scholarly free from fraud and deception and is an educational objective of this institution. Academic dishonesty included, but is not limited to, cheating, plagiarizing, fabricating of information or citations, facilitating acts of academic dishonesty by others, having unauthorized possession of examinations, submitting work of another person or work previously used without informing the instructor, or tampering with the academic work of other students. Students involved in academic dishonesty will fail the course.

NOTE THE FOLLOWING

- 1. This syllabus is tentative for the semester. It is meant to be a guide. Certain topics may be stressed more or less than indicated in the class note books and, depending on class progress, certain topics may be omitted.
- 2. Homework problems will be recommended on a regular basis.
- 3. Missed examination: A missed examination will be considered as 'F'.

EXAMS SCHEDULE:

Mid-term	July 20 th , 2012	July 23 rd , 2012	2,3,4,5,6,7
Final Exam	August 3 rd , 2012	August 6 st , 2012	8,9,10, 11, 14, 15

PROJECT SCHEDULE:

Journal Article &	nal Article & Uploaded Date Due Date	
Project	July 25 th , 2012	August 1 st , 2012

BA 578 Summer II

<u>Text Assignment</u>	Suggested Problems	<u>Objective</u>
Chapter 1 A First Look at Statistics		 Define descriptive and inferential statistics. Differentiate between a quantitative and a qualitative variable. Differentiate between a discrete and a continuous variable. Know the four levels of measurement – nominal, ordinal, interval, and ratio.
Chapter 2 Ungrouped Data	2-9(2),2-10(3), 2-11(4), 2-13(8), 2-18(3), 2-22(3), 2-31(2), 2-33(3), 2-35(5)	 ✓ Construct a frequency distribution and define mean, mode and median. ✓ Define and calculate percentile and percentile Rank. ✓ Measure variability for ungrouped data.
Chapter 3 Grouped Data	3-6(3), 3-7(1), 3-16(1), 3-20(5), 3-24(1, 2), 3-30(1), 3-31(1), 3-40(2),	 Construct a frequency distribution. Determine and compute relative frequencies, and distribution cumulative frequencies of a frequency. Differentiate between GAP in class and Non-GAP in class of a frequency distribution. Measure central tendency.

		 Measure variability for grouped data. Define and calculate percentile and percentile Rank. Understand and calculate Chebychef theorem.
Chapter 4 The Statistical Sampling Study (Simple Regression)	4-9(4, 5)	 Understand why we use sample instead of population Understand, interpret and calculate regression analysis.
Chapter 5 Probability	5-8(6), 5-9(14), 5-11(23),5-12(27), 5-15(36)	 Define probability. Define marginal, conditional, and joint probabilities. Use the special and general rules of multiplication and addition in probability computation. Calculate marginal, conditional, and joint probabilities.
Chapter 6 Discrete Probability Distribution	6-10(1), 6-12(4), Page A (Review Question#2,#5) 6-22(1)	 Describe the characteristics and compute probabilities using the binomial probability distribution both use of binomial Formula and use of tables. Define probability distribution and random variable. Calculate the mean, variance, and standard deviation of a discrete distribution. Define and compute Hypergeometric Distribution

Chapter 7	7-21(6, 7),	 Describe the characteristics and compute standard normal
The Normal Distribution	7-22(11),	distribution by using formula and
	7-23(23),	normal curve table.
	7-24(31), 7-44(1),	 Describe the characteristics and compute normal
	7-45(7), 7-45A (2),	and compute normal approximation to the Binomial
	7-45B (8),	distribution.
	7-45C (14),	✓ Differentiate between
	7-45D(17),	standard normal distribution and normal approximations to the
	7-45E(26),	Binomial distribution.
	7-62(2), 7-63(7)	 Describe various sampling techniques.
		 Explain the Central Limit Theorem.
		✓ Describe interval estimate and the confidence level.
		✓ Define and compute interval estimates of mean.
		✓ Define and compute estimates of the population proportion
		✓ Identify Type I and Type II errors.
		✓ Conduct a test of hypothesis about a population mean and a population proportion.
		✓ Conduct the test of hypothesis using one and two tail tests.
		\checkmark Conduct the test of
		hypothesis regarding one population mean with a small sample.
		 Define and compute hypothesis testing for comparing two means.
Chapter 8	8-9(3), 8-10(11),	\checkmark Describe interval estimate
Statistical Estimation	8-11(21)	and the confidence level.

		 Define and compute interval estimates of mean. Define and compute estimates of the population proportion
Chapter 9 Hypothesis Testing	9-17(3), 9-18(8), 9-19(14), Hypothesis Testing: #1, 2, fill in the blank (1-50)	 Identify Type I and Type II errors. Conduct a test of hypothesis about a population mean and a population proportion. Conduct the test of hypothesis using one and two tail tests. Conduct the test of hypothesis regarding one population mean with a small sample. Define and compute hypothesis testing for comparing two means.
Chapter 10 Simple Regression	10-17(1), 10-19(3), 10-24(1), 10-27 (9), 10-28(11), 10-29(13)	 Understand the differences between various experiment designs and when to use them. Compute and interpret the results of ANOVA. Compute the growth rate. Define whether the regression equation makes sense.
Chapter 11 Multiple Regression	11-9(1)	 Understand linear regression model. Describe the relationship between two or more independent variables and the dependent variable using a multiple regression equation.

		✓ Compute and interpret the multiple standard error of the estimate and the coefficient of determination.
Chapter 12 Time-Series Forecasting		 Understand the factor influencing time series data. Define and compute the classical multiplicative time- series model. Describe the characteristics and compute the using of smoothing method is forecasting. Define and compute linear trend. Describe the characteristics and compute autoregressive modeling for fitting and forecasting.
Chapter 13 Co integration and Error- Correction Modeling		 Understand the nature of conintegration and be able to derive conintegrating equation through error correction modeling. Differentiate between stationary time series and non-stationary time series.
Chapter 14 Analysis of Variance	14-11, 14-12	 ✓ Define and analyze variance. ✓ Understand regression approach to ANOVA
Chapter 15 Chi-Square Tests	15-8 to 15-9 (#1, 2)	 ✓ Understand and interpret interaction. ✓ Understand the chi-square goodness-of-fit test and how to

	use it. ✓ Analyze data by using the chi-square test of independence.
Chapter 16 Proportions	 Define and compute test for differences between proportions for large samples sizes. Define and compute test for differences between proportions of a multinomial population

Criteria (Course Objectives)	1 (Unsatisfactory)	2 (Emerging)	3 (Proficient)	4 (Exemplary)
1) Learn how to calculate and	Student cannot calculate	Student can calculate	Student can calculate	Student can calculate
apply measures of location and	and apply any	and apply some	and apply most	and apply all measures
measures of dispersion grouped	measures of location	measures of location	measures of location	of location and
and ungrouped data cases.	and measures of	and measures of	and measures of	measures of dispersion
	dispersion for grouped	dispersion for grouped	dispersion for grouped	for grouped and
	and ungrouped data.	and ungrouped data.	and ungrouped data.	ungrouped data.
2) Learn how to apply discrete and	Student cannot apply	Student can apply	Student can apply	Student can apply
continuous probability	discrete and	discrete and	discrete and	discrete and
distributions to various business	continuous probability	continuous probability	continuous probability	continuous probability
problems.	distributions to any	distributions to some	distributions to most	distributions to all of
	business problems.	business problems.	of business problems.	business problems.
3)Understand the hypothesis	3.1 Student cannot	3.1 Student can	3.1 Student can	3.1 Student can
testing:	perform the test of	perform some test of	perform most test of	perform all test of
	hypothesis	hypothesis	Hypothesis	Hypothesis
3.1 Be able to perform Test of	3.2 Student cannot	3.2 Student can	3.2 Student can	3.2 Student can
Hypothesis	calculate confidence	calculate some	calculate most	calculate all
	interval for a	confidence interval for	confidence interval for	confidence interval for
3.2 calculate confidence interval	population parameter	a population parameter	a population parameter	a population parameter
for a population parameter for	for single sample and	for single sample and	for single sample and	for single sample and
single sample and two sample	two sample cases.	two sample cases.	two sample cases.	two sample cases.
cases.	3.3 Student doesn't	3.3 Student	3.3 Student	3.3 Student
	understand the concept	understands some part	understands most part	understands the entire
3.3 Understand the concept of p-	of p-value.	of the concept of p-	of the concept of p-	concept of p-values.
values.		value.	values.	
4) Learn non-parametric test such	Student doesn't know	Student knows some	Student knows most	Student knows all
as the Chi-Square test for	non-parametric test	parts of non-	parts of non-	parts of non-
Independence as well as Goodness	such as the Chi-Square	parametric test such as	parametric test such as	parametric test such as
of Fit.	test for Independence	the Chi-Square test for	the Chi-Square test for	the Chi-Square test for
	as well as Goodness of	Independence as well	Independence as well	Independence as well
	Fit.	as Goodness of Fit.	as Goodness of Fit.	as Goodness of Fit.

COURSE NUMBER & TITLE: BA578 Business and Economics Statistics

5) Understand regression analysis:	5.1 Student cannot	5.1 Student can	5.1 Student can	5.1 Student can
5.1 Be able to compute and	compute and interpret	compute and interpret	compute and interpret	compute and interpret
interpret the results of Bivariate	the results of Bivariate	some of the results of	most of the results of	all of the results of
Regression	Regression	Bivariate Regression	Bivariate Regression	Bivariate Regression
5.2 Be able to compute and	5.2 Student cannot	5.2 Student can	5.2 Student can	5.2 Student can
interpret the results of Multivariate	compute and interpret	compute and interpret	compute and interpret	compute and interpret
Regression.	the results of	some of results of	most of results of	all of results of
5.3 Be able to compute and	Multivariate	Multivariate	Multivariate	Multivariate
interpret Correlation Analysis	Regression	Regression	Regression	Regression
5.4 Be able to perform ANOVA	5.3 Student cannot	5.3 Student can	5.3 Student can	5.3 Student can
and F-test.	compute and interpret	compute and interpret	compute and interpret	compute and interpret
5.5 Be able to understand both the	Correlation Analysis	some parts of	most parts of	all parts of Correlation
meaning and applicability of a	5.4 Student cannot	Correlation Analysis	Correlation Analysis	Analysis
dummy variable.	solve any questions	5.4 Student can solve	5.4 Student can solve	5.4 Student can solve
5.6 Be able to understand the	regarding ANOVA	easy questions	medium-hard	difficult questions
assumptions which underline a	and F-test.	regarding ANOVA	questions regarding	regarding ANOVA
regression model.		and F-test.	ANOVA and F-test.	and F-test.
5.7 Be able to perform a multiple	5.5 Student cannot	5.5 Student cannot	5.5 Student cannot	5.5 Student cannot
regression using computer	apply the dummy	apply the dummy	apply the dummy	apply the dummy
software.	variable to solve any	variable to solve some	variable to solve most	variable to solve all
	questions.	questions.	questions.	the questions.
	5.6 Student doesn't	5.6 Student	5.6 Student	5.6 Student
	understand the	understands some	understands most parts	understands all parts
	assumptions which	parts of the	of the assumptions	of the assumptions
	underline a regression	assumptions which	which underline a	which underline a
	model.	underline a regression	regression model.	regression model.
	5.7 Student is unable	model.	5.7 Student is able to	5.7 Student is able to
	to perform a multiple	5.7 Student is able to	perform a multiple	perform a multiple
	regression using	perform a multiple	regression using	regression using
	computer software.	regression using	computer software for	computer software for
		computer software for	medium-hard	difficult questions
		easy questions	questions	