Instructor: Cameron Johnson, Ph.D.
Adjunct Professor
email: Cameron.Johnson@tamuc.edu

Classroom: JOUR
Meeting Times: Tuesdays, 4:30pm to 7:10pm; Fridays, 7:30 pm to 10:10 pm

Course Objectives
- Gain a working knowledge of data mining techniques
- Learn to design and implement algorithms to apply techniques in a practical fashion
- Understand which algorithms to apply to what kind of databases to obtain desired useful knowledge about the data

Course Outline:
General theory, concept, and techniques related to intelligent database design are discussed in this course. Many programming techniques to allow students to integrate intelligent database systems with web-based applications are covered in detail. Additional topics to be covered include expert systems, neural networks, hypermedia, and text retrieval. These additional topics are used as supplementary entities to be integrated into database reasoning components. A moderate-size semester project needs to be developed and demonstrated for the practice of the design of an intelligent database. This course project is a purely web-based and practical database system that is capable of handling high-level intelligent queries.

SOME TOPICS TO BE SELECTED FOR DISCUSSION:
- Statistical Data Mining
- Classification
- Association Rules
- Clustering
- Web Mining
- Fuzzy Logic
- Rough Set Theory
- Neural Networks
TENTATIVE SCHEDULE:
(1 Week) Chapter 1: Introduction
(1 Week) Chapter 2: Association Rules
(1 Week) Chapter 3: Classification Rules
(2 Weeks) Chapter 7: Clustering
(1 Week) Chapter 6: Neural Networks in Data Mining
(1 Week) Mid-term Test
(1 Week) Chapter 4: Statistical Data Mining
(2 Weeks) Chapter 5: Rough Sets and Data Mining
(1 Week) Chapter 8: Fuzzy Information Retrieval
(2 Weeks) Project and Demonstration

TENTATIVE RUBRIC:
Homework Presentations (15%) – 5% per presentation, may be done in groups of up to 2
Mid-Term Test (30%)
Project Proposal (10%) – Project may be done in groups of up to 4 students
Project Coding/Implementation (15%)
Project Portfolio (15%)
Project Presentation (15%)

Textbook:
Practical Applications of Data Mining: Methods and Practices, Sang C. Suh, Jones and Bartlett Publishers,

Additional Useful Reading:
[3] Tapio Eloma, Heikki Mannila, and Hannu Toivonen (Editors), Principles of Data Mining and Knowledge
[4] Stephan Kudyba and Richard Hopcroft, Data Mining and Business Intelligence: A Guide to Productivity,

For research assistance, please contact:
John Atabaev, Reference Librarian: Sciences & Collection Development
John.Atabaev@tamuc.edu
903-886-5726
COURSE REQUIREMENTS:
CSCI526 or equivalent is a prerequisite for this course. It is expected that each student be familiar with relational DBMS including relational data models, ER models, normalization, and functional dependencies. Though each of these will be reviewed in class during the first three weeks of the course, it is very imperative that a basic understanding of them exists. During the first half of the semester, theoretical aspects of relational and intelligent databases will be covered. Most of this material will be derived from instructor’s note, published papers, reference books, and class discussions. Therefore, significant amount of research is expected to be performed by each student to develop appropriate ideas and concepts relevant to intelligent database design. The second half of the semester will be used to develop an intelligent database system by applying concepts and ideas derived during the first half of the semester. Each development project will be different in that each system should display a level of unique intelligent features identified during the first half of the course. Additional requirements of the course are a number of presentations to be made by each team, a test, a term paper, and a project report. Due dates for all assigned materials will be announced in class in advance. It is the student’s responsibility to have all assignments ready on time. Any student who has to be absent on an assignment due date must arrange to have the assignment submitted early. Late assignment may not be accepted.

➢ ACADEMIC ETHICS:
"All students enrolled at the University shall follow the tenets of common decency and acceptable behavior conducive to a positive learning environment." (See Student’s Guide Handbook, Policies and Procedures, Conduct).

➢ ATTENDANCE POLICY:
Students are expected to be present at all class lectures. If a student is absent from class on the due date of any assignment, they are expected to make alternative arrangements to assure that the assignment is turned in ON TIME. Any student wishing to withdraw from the course must do so officially as outlined in the class schedule. THE INSTRUCTOR CANNOT DROP OR WITHDRAW ANY STUDENT.

➢ COURSE REQUIREMENT DEADLINES:
Credit will be given for ONLY those exam(s), program(s), and/or project(s) turned in no later than the deadline(s) as announced by the instructor of this class unless prior arrangement has been made with the instructor.

➢ Smoke, Vapor & Tobacco Free Environment:
University Procedure 34.05.99.R1 now prohibits the use of vapor/electronic cigarettes, smokeless tobacco, snuff and chewing tobacco inside and adjacent to any building owned, leased, or operated by A&M – Commerce.

Students with Disabilities Act Compliance:
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you have a disability requiring an accommodation, please contact:
Office of Student Disability Resources and Services
Texas A&M University-Commerce
Gee Library
Room 132
Phone (903) 886-5150 or (903) 886-5835
Fax (903) 468-8148
StudentDisabilityServices@tamuc.edu